Prof. Dr. Céline Delbès

INRA, France.

Investigadora en la "Unidad Mixta de Investigación – Queso" (UMR 545), Universidad de Clermont-Auvergne, Instituto Nacional de la Investigación Agraria de Francia (INRA), VetAgro-Sup, Aurillac, Francia. The microbial ecology of raw milk cheeses: an update of knowledge about the range of potential benefits.

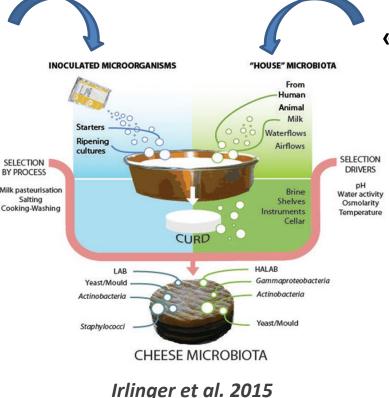
La ecología microbiana de los quesos de leche cruda: qué sabemos hasta hoy sobre sus potenciales beneficios.

The microbial ecology of raw milk cheese : drivers, risks and potential benefits

Céline Delbès

UMR 545 Fromage, UCA, INRA, VetAgroSup, F-15000 Aurillac, France celine.delbes@inra.fr

Cheese microbiota :


an evolving assembly of « house » and inoculated microbes

Change in microbial balance during ripening

Inoculated microorganisms

- Commercial starters
- o Autochtonous consortia
- Traditional replication (back- slopping...)

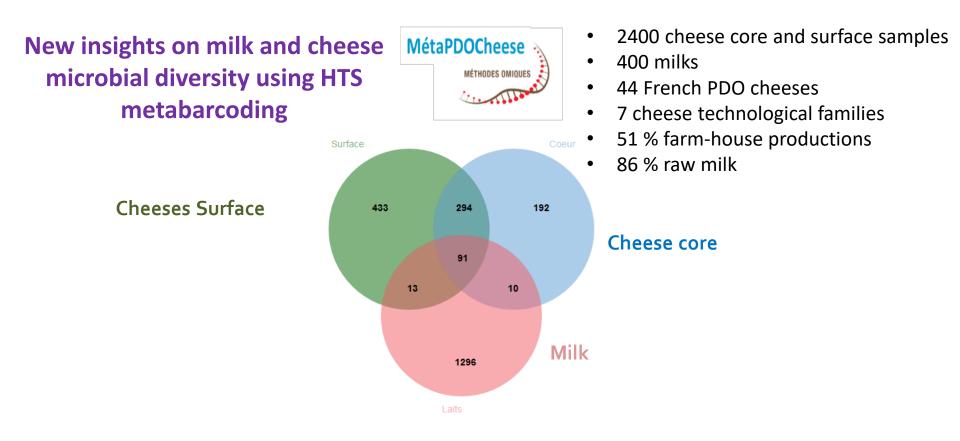
Acidification and ripening

« House » microbiota

 Raw milk microbiota under the influence of farming practices (dairy species, breed, milking practices...),

0

Cheese-making environment microbiota (wood surfaces, brine, airflows...)


Essential for product typicity

Traditional cheeses = complex and specific microbiota Deserves better understanding of diversity and ecological drivers

1/ Ecology of dairy products in the "meta-omics" era

"metabarcoding" approaches : rely on high-throughput sequencing (HTS) of target DNA (taxonomic marker)

Fromages

F. Irlinger, INRA C. Delbès, INRA

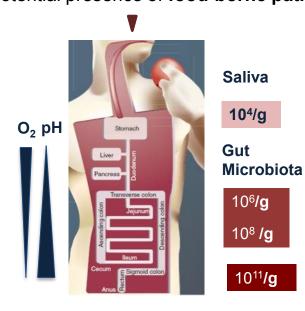
For the future...

foster dairy products in the "multi-omics" era

De Filippis, F. et al. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. Rep. 6, 21871; doi: 10.1038/srep21871 (2016).

Get deep insight into:

- microbial diversity at strain level
- interactions between microbiota composition, microbiota functional potentialities, and cheese biochemical properties


→ enrich scientific background for traditional cheeses specificities

2/ Microbes in cheese and human health

Ingestion through the diet:

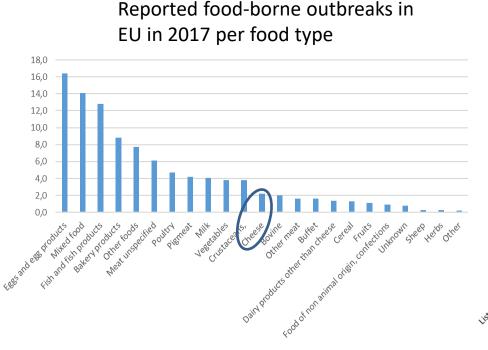
10⁹⁻ 10¹¹ microorganisms per day Solid matrix Biodiversity Potential presence of food-borne pathogens

Potential impact of cheese microbes on health:

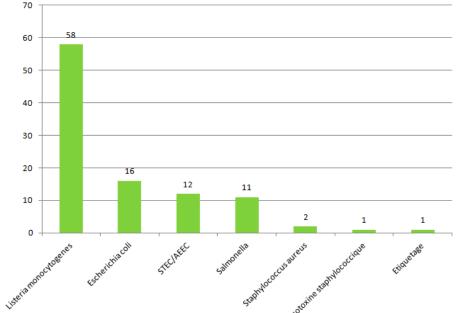
- Produce beneficial metabolites : organic acids, vitamines K, B, C... essential amino-acids, conjugated linoleic acid...
- Living microbes can act as probiotics
- Modify cheese matrix via microbial enzymes
 - Bioactive peptides
 - Digestibility
 - Bioavailability of minerals
 - **Reduce metabolites with adverse effects (**lactose, mycotoxines, ...),
 - Reduce allergenicity
- Cause toxi-infections

QUESTIONS

Interactions with the immune system ? Interactions with the gut microbiota ? Co-evolution over the millenary history of cheese production and consumption ?



2.1. Risk associated with pathogens


APPROVED: 19 November 2018 doi: 10.2903/i.efsa.2018.5500

The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017

European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC)

Cheese represents **2.2 %** of total foodborne outbreaks reported in EU for 2017 Pathogens responsible for outbreaks associated with raw milk cheeses in France in 2017 (N=101) (DGAL/MUS/2019-86, 01/02/2019)

The most frequent pathogens in outbreaks associated with raw milk cheeses are *L. monocytogenes*, shigatoxinproducing *E. coli* and *Salmonella*

2. 2. Cheese and modulation of the human gut microbiota

Camembert : increase in *Enterococcus* populations, colonization by *Geotrichum candidum* in human fecal samples

Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption

Olivier Firmesse ^a, Elise Alvaro ^a, Agnès Mogenet ^b, Jean-Louis Bresson ^b, Riwanon Lemée ^c, Pascale Le Ruyet ^c, Cécile Bonhomme ^c, Denis Lambert ^c, Claude Andrieux ^a, Joël Doré ^a, Gérard Corthier ^a, Jean-Pierre Furet ^{a*}, Lionel Rigottier-Gois ^a

Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota

Olivier Firmesse, Sylvie Rabot, Luis G. Bermúdez-Humarán, Gérard Corthier & Jean-Pierre Furet

Unité d'Ecologie et Physiologie du Système Digestif, INRA, Jouy-en-Josas, France

- Only a few studies yet
- Show the survival of technological flora to the digestion process (protection by the cheese matrix) without colonisation
- > Modulation of the gut microbiota after cheese consumption
- Different responses depending on the cheese type

Solution With these responses ?

LAB, other bacteria ? Yeasts ? Microbial associations ?

Cooked pressed cheese : reduction of the level of amoxicilline-resistant *Enterococcus* after antibiotic treatment (amoxicilline + clavulanic acid)

Journal of Applied Microbiology ISSN 1364-5072

ORIGINAL ARTICLE

Effect of cheese consumption on emergence of antimicrobial resistance in the intestinal microflora induced by a short course of amoxicillin-clavulanic acid

X. Bertrand¹, V. Dufour², L. Millon², E. Beuvier³, H. Gbaguidi-Haore¹, R. Piarroux², D.A. Vuitton² and D. Talon¹

1 Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France

2 Unité Santé et Environnement Rural, Université de Franche-Comté, Besançon, France

3 Unité de Recherches en Technologie et Analyses Laitières, Institut National de Recherche Agronomique, Poligny, France

2. 3. Raw milk, cheeses and immunomodulation: epidemiological studies

The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study

Georg Loss, MSc,^{a,b} Silvia Apprich, PhD,^c Marco Waser, PhD,^{a,b} Wolfgang Kneifel, PhD,^c Jon Genuneit, MD,^d Gisela Büchele, PhD,^d Juliane Weber, MD,^e Barbara Sozanska, MD,^f Hanna Danielewicz, MD,^f Elisabeth Horak, MD,^g R. J. Joost van Neerven, PhD,^h Dick Heederik, PhD,ⁱ Peter C. Lorenzen, PhD,^j Erika von Mutius, MD,^e Charlotte Braun-Fahrländer, MD,^{a,b} and the GABRIELA study group* Basel, Switzerland, Vienna and Innsbruck, Austria, Ulm, Munich, and Kiel, Germany, Wroclaw, Poland, and Deventer and Utrecht, The Netherlands

Consumption of unprocessed cow's milk protects infants from common respiratory infections

Georg Loss, PhD,^{a,b,c} Martin Depner, PhD,^a Laurien H. Ulfman, PhD,^d R. J. Joost van Neerven, PhD,^{d,e} Alexander J. Hose, MPH,^a Jon Genuneit, MD,^f Anne M. Karvonen, PhD,^g Anne Hyvärinen, PhD,^g Vincent Kaulek, PhD,^h Caro

Nicklaus S, Divaret-Chauveau A, Chardon M-L, et al. ; Pasture Study Group. The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years. Allergy. 2018;00:1-11. https://doi.org/10.1111/all.13650

 Raw milk consumption would contribute to the child protection against :

> Asthma Allergies **Respiratory infections**

 Cheese consumption would contribute to the child protection against :

- Atopic dermatitis
- Food allergies

Relations with whey proteins ? Microbiota?

2. 4. Overview of potential risk and benefits for health

Cheese matrix :

proteins (caseins), lipids (PUFA), minerals (Ca, P), vitamins

lipids (SFA), salt

Am J Clin Nutr 2018;108:1-8. Printed in USA. © 2018 American Society for Nutrition.

Dairy matrix effects: response to consumption of dairy fat differs when eaten within the cheese matrix—a randomized controlled trial

Emma L Feeney,1:2 Rebecca Barron,1:2 Victoria Dible,1:2 Zita Hamilton,1:2 Yvonne Power,2 Linda Tanner,2 Cal Flynn,2 Paul Bouchier,2 Tom Beresford,2:3 Nessa Noronha,1:2 and Eileen R Gibney(2

+ :

Unprocessed raw material

 \rightarrow preservation of proteins, lipids, vitamins

Fermentation :

+:

bioactive peptides, vitamines

Microbiota :

+:

Living microorganisms, potential interactions with the immune and digestive systems

Raw milk cheeses :

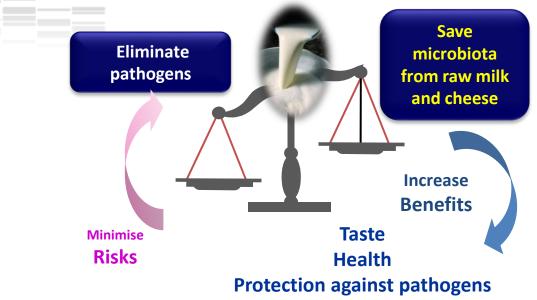
pathogens +:

-:

Microbial diversity Sensory richness of the product

Increased potential of interactions with immune and digestive systems

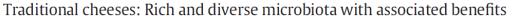
Protection against cardiovascular affections ?


Anti-microbial/anti-inflammatory properties ?

Reducing blood pressure ?

Anti oxydative activities ?

3/ Risks and benefits management : a daily challenge for raw milk cheese productions

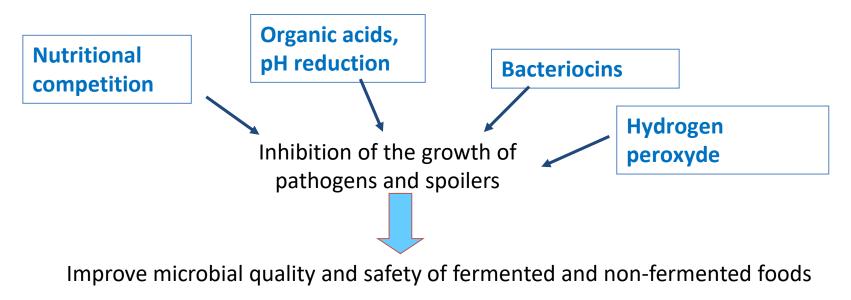


□ Find a trade-off between safety, microbial diversity and sensory richness

International Journal of Food Microbiology

CrossMarl

Marie-Christine Montel ^{a,*}, Solange Buchin ^b, Adrien Mallet ^{c,d}, Céline Delbes-Paus ^a, Dominique A. Vuitton ^{d,e}, Nathalie Desmasures ^{c,d}, Françoise Berthier ^b


^a INRA, Unité Recherches Fromagères, 20 Côte de Reyne, F-15000 Aurillac, France
^b INRA, UR342 Technologie et Analyses Laitières, F-39801 Poligny, France
^c Normandie Univ, France

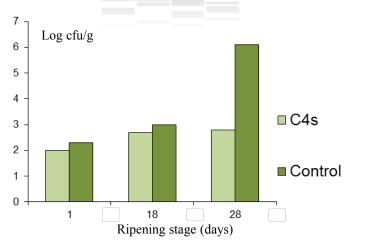
^d UNICAEN, ABTE, F-14032 Caen, France

EA3181/Université de Franche-Comté, 25030, Besançon, France

3. 1. Targeted approaches : Biopreservation = Relying on microbial diversity in milk and cheese as a barrier against pathogens

Antagonistic properties of microbes:

Preserve sensory and nutritional properties



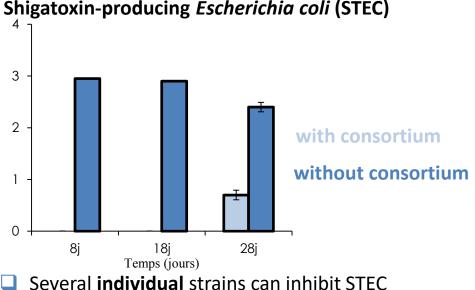
Inhibition of pathogens in raw milk cheeses by microbial

consortia

Listeria monocytogenes

Inhibition is determined by specific species

32 strains = 14 strains = 4 strains


Cooperation between species is required : individual strains are not antagonistic as themeselves

	International Journal of Food Microbiology 174 (2014) 98-109	Food Control 96 (2019) 499-507		
307833AVA	Contents lists available at ScienceDirect		Contents lists available at ScienceDirect	
5	International Journal of Food Microbiology	ANT.	Food Control	
ELSEVIER	journal homepage: www.elsevier.com/locate/ijfoodmicro	ELSEVIER	journal homepage: www.elsevier.com/locate/	

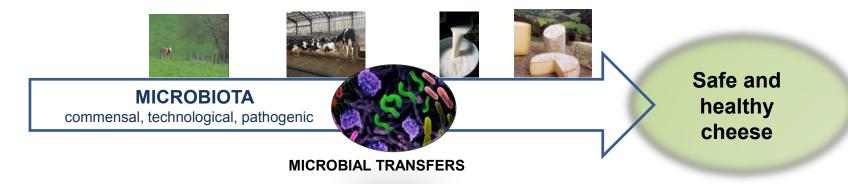
Microbial biodiversity in cheese consortia and comparative *Listeria* growth on surfaces of uncooked pressed cheeses

Cécile Callon^{*}, Emilie Retureau, Robert Didienne, Marie-Christine Montel INRA URF 545 Fromagères, 20 Côte de Reyne, IS000 Aurillac, France Can lactic acid bacteria be an efficient tool for controlling *Listeria monocytogenes* contamination on cheese surface? The case of Gorgonzola cheese

Stefano Morandi, Tiziana Silvetti^{*}, Giovanna Battelli, Milena Brasca Institute of Sciences of Food Production (ISPN), National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy

- **Synergistic effects of strains associations**
- Inhibition depends on cheese technology

- SAc	Food Microbiology		
	www.elsevier.com/locate/fm		


Control of Shigatoxin-producing *Escherichia coli* in cheese by dairy bacterial strains

Cécile Callon^{*}, Céline Arliguie, Marie-Christine Montel INRA, UR545 Fromagères, 20 Côte de Reyne, IS000 Aurillac, France

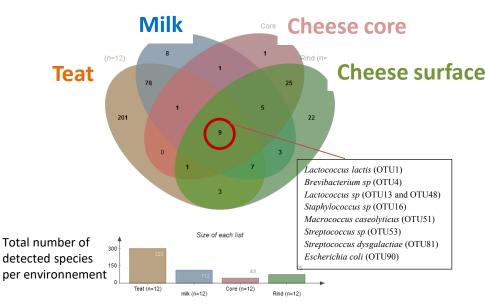
3. 2. An alternative: management of microbial resources from the primary production environment across the cheese process chain

PRIMARY PRODUCTION CHAIN

Objectives:

Understanding the drivers of microbiota for safe and healthy raw milk cheese

- Influence of the overall farm management system ?
- Several running projects under the network "RMT Terroir" (Amont Saint-Nectaire, IFEP, Phyllos...)



Microbial transfers and interactions from dairy farm

environment to the human gut

Shared bacterial species between cow teat, milk and cheese

85% of the species in milk are also present on teat

27% of species in cheese (core and surface) are also present on teat, especially species potentially involved in ripening (*B. linens, Staph. equorum*)

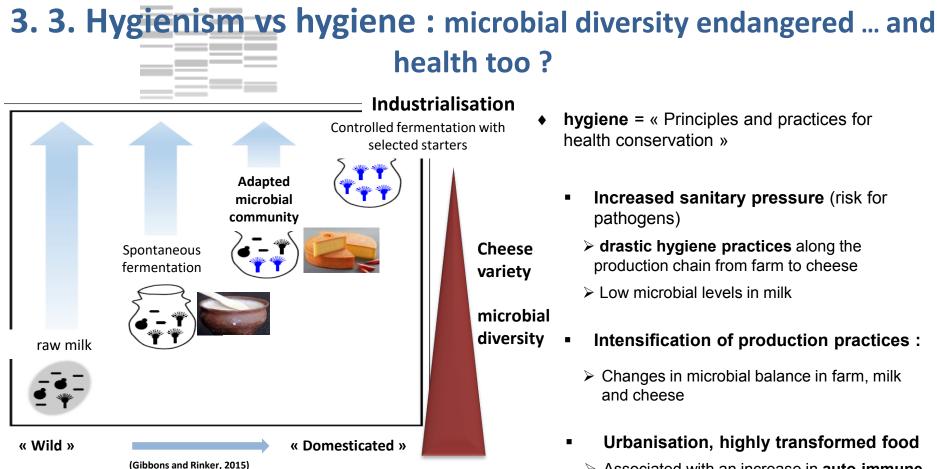
SCIENTIFIC REPORTS

PEN Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing

Received: 15 September 2017 Accepted: 11 December 2017 Wildhed cellne: 09 January 2018 Marie Frétin^{1,2}, Bruno Martin²

Marie Frétin^{1,2}, Bruno Martin², Etienne Rifa^{0,1}, Verdier-Metz Isabelle¹, Dominique Pomiés², Anne Ferlay², Marie-Christine Montel¹ & Céline Delbés^{0,1}

ARTICLE

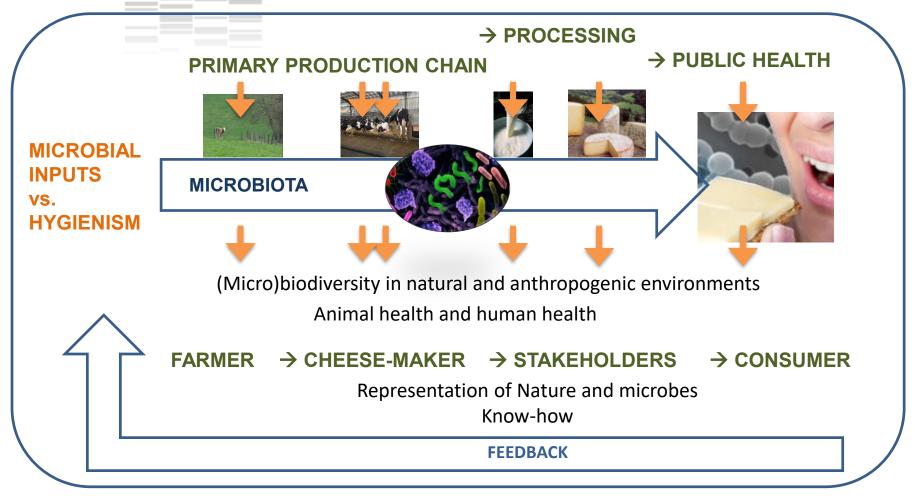

https://doi.org/10.1038/s41467-019-09303-w OPE

Colonization of the human gut by bovine bacteria present in Parmesan cheese

Christian Milani ¹, Sabrina Duranti¹, Stefania Napoli², Giulia Alessandri³, Leonardo Mancabelli², Rosaria Anzalone², Giulia Longhi², Alice Viappiani², Marta Mangifesta^{1,2}, Gabriele Andrea Lugli¹, Sergio Bernasconi⁴, Maria Cristina Ossiprandi³, Douwe van Sinderen^{3,5,6}, Marco Ventura^{1,4} & Francesca Turroni^{1,4}

	Stool	Milk	Litter	Cheese	
Atopostipes suicloacalis					P2
Corynebacterium stationis					P1
Corynebacterium variable					P1
Jeotgallicoccus psychrophilus					P2
Kocuria kristinae					P3
Lactobacillus delbrueckii					P2
Lactobacillus helveticus					P2
Oligella ureolytica					P2
Paraprevotella clara					RE1
Prevotella ruminicola					RE1
Pseudoclavibacter soli					P1
Pseudoflavonifractor capillosus					P3
Streptococcus thermophilus					P2
Treponema porcinum					P3
Bifidobacterium mongoliense					P1
		1.05			-

Ecological and health issue :


- Loss of microbial diversity
- ✓ Lower exposition to food-borne and environmental microorganisms
- Associated with an increase in auto-immune affections

C. Villeneuve et al. / Microbes and Infection 20 (2018) ,https://doi.org/10.1016/j.micinf.2017.11.001 Evolution of the hygiene hypothesis into biota alteration theory: what are the paradigms and where are the clinical applications?

Relation with the gut microbiota and auto-immune affections ?

Perspectives

Find solutions through systemic and trans-disciplinary approaches ?

Integrative, transdisciplinary approaches (agronomy, animal science, microbiology, immunology, sociology, anthropology...)

ACKNOWLEDGEMENTS INRA UMRF Christophe Chassard, Etienne Rifa Cécile Callon Marie Frétin Isabelle Verdier-Metz Marie-Christine Montel

Thank for you Alignment

INRA GMPA Françoise Irlinger Eric Dugat-Bony

RMT Fromages de Terroirs

Iéseau Fromages de Terroirs

